Stat 201: Introduction to Statistics

Standard 26: Confidence Intervals for Means

Means Sampling Distributions

Recall:

- The mean of the sampling distribution for a sample mean

$$
\begin{aligned}
\mu_{\bar{x}}= & \text { the mean of all possible sample means } \\
& =\mu_{x}=\text { the population mean }
\end{aligned}
$$

- The standard error, the standard deviation of all sample means, is:

$$
\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}
$$

Confidence Intervals

- Often, we do not know the population mean
- We use our sample means to make inference on the population parameter
- We MUST make sure that the data is obtained through randomization and that distribution of the data is approximately normal
- Recall Central limit theorem:
- For this we require $\mathrm{n}>30$ or the population to be normal to begin with

Confidence Intervals For the Population Mean

- When we talk about confidence intervals for the population mean we have two approaches

1. When we know σ_{x} (we are rarely in this case)

- Here we'll use the z-statistic

2. When we don't know σ_{x}

- Here we'll use the t-statistic
- $\quad \mathrm{T}$ is very similar to Z
- Degrees of freedom = sample size $-1=n-1$

Properties of the t-distribution

1. The t-distribution is different for different degrees of freedom
2. The t-distribution is centered and symmetric at 0
3. The area under the curve is 1 and $1 / 2$ on either side of 0
4. The probability approaches 0 as we move away from 0
5. The t-distribution has fatter tails than the standard normal
6. As the sample size increases t gets close to z

The t-distribution

Student distribution for various ν

Confidence Intervals When We Know σ_{x}

- \bar{x} is our point-estimate for the population mean
- Our 'best' guess for the true population, mean is our sample mean

Confidence Intervals When We Know σ_{x}

- We use our sample means to make inference on the population mean

$$
\bar{x} \pm Z_{1-\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)
$$

- \bar{x} is our point-estimate for the population mean
- $z_{1-\frac{\alpha}{2}}\left(\frac{\sigma_{X}}{\sqrt{n}}\right)$ is our margin of error

Confidence Intervals: Margin of Error When We Know σ_{x}

- $z_{1-\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$ is our margin of error
- As \mathbf{n} increases, $\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$ decreases, causing the margin of error to decrease causing the width of the confidence interval to narrow
- As \mathbf{n} decreases, $\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$ increases, causing the margin of error to increase causing the width of the confidence interval to widen

Confidence Intervals: Margin of Error

 When We Know σ_{x}- $z_{1-\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$ is our margin of error
- As the confidence level decreases, z decreases causing the margin of error to decrease, causing the width of the confidence interval to narrow
- As the confidence level increases, z increases causing the margin of error to increase, causing the width of the confidence interval to grow wider

Confidence Intervals Bounds When We Know σ_{x}

$$
\begin{aligned}
& \text { Lower Bound }=\bar{x}-z_{1-\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right) \\
& \text { Upper Bound }=\bar{x}+z_{1-\frac{\alpha}{2}}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)
\end{aligned}
$$

We are --\% confident that the true population mean, μ_{x}, is between the lower and upper bound.

Confidence Intervals When We Don't Know σ_{x}

- We use our sample means to make inference on the population mean

$$
\bar{x} \pm t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)
$$

- \bar{x} is our point-estimate for the population mean
- $t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$ is our margin of error
$-s_{x}$ is the sample standard deviation

Confidence Intervals: Margin of Error

 When We Don't Know σ_{x}- $t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$ is our margin of error
- As n increases, t decreases and $\left(\frac{s_{x}}{\sqrt{n}}\right)$ decreases, causing the margin of error to decrease causing the width of the confidence interval to narrow
- As \boldsymbol{n} decreases, t increases and $\left(\frac{s_{x}}{\sqrt{n}}\right)$ increases, causing the margin of error to increase causing the width of the confidence interval to widen

Confidence Intervals: Margin of Error When We Don't Know σ_{x}

- $t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$ is our margin of error
- As the confidence level decreases, t decreases causing the margin of error to decrease, causing the width of the confidence interval to narrow
- As the confidence level increases, t increases causing the margin of error to increase, causing the width of the confidence interval to grow wider

Confidence Intervals Bounds

 When We Don't Know σ_{x} Lower Bound $=\bar{x}-t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$ Upper Bound $=\bar{x}+t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$- We are --\% confident that the true population mean, μ, is between the lower and upper bounds.

Confidence Intervals When We Don't Know σ_{x}

- t is based on the t distribution which is a lot like the normal distribution but with fatter tails
- You can find the correct t-value by finding the cross-hair of degrees of freedom, $\mathrm{n}-1$, and the two tailed alpha
- http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

Finding t for Our Confidence Intervals

- Say we were trying to find the t-value for a 95\% confidence with $\mathrm{n}=10$
- This means $\alpha=1-.95=.05$ and the degrees of freedom = 10-1 = 9
- $t_{1-\frac{.05}{2}, 9}=2.262$

cum. prob	$t_{\text {so }}$	$t_{.75}$	$t_{\text {s }}{ }^{\text {a }}$	$t_{\text {B5 }}$	$t_{\text {. }}^{\text {g0 }}$	$t_{\text {,95 }}$	$t_{\text {t. }}$. ${ }^{\text {a }}$	$t_{.98}$	$t_{\text {, } 995}$	$t_{\text {g99 }}$	
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05 B	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
A 91	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	u.uvu	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

Zoom In

cum. prob	$t_{\text {. } 50}$	$t_{.75}$	t^{80}	$t_{\text {B5 }}$	$t_{\text {.90 }}$	$t_{\text {.95 }}$	$t_{\text {. } 975}$	$t_{\text {t.99 }}$	$t_{\text {. } 995}$	$t_{\text {.999 }}$	$t_{\text {.9995 }}$
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05 B	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
A 91	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	v.uev	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

- A is the degrees of freedom, $n-1$
- B is the significance level - for confidence intervals we look for α in the two-tail row
- C is the t -value associated with the provided degrees of freedom and significance level

Finding t for Our Confidence Intervals

- Say we were trying to find the t-value for a 99\% confidence with $\mathrm{n}=9$
- This means $\alpha=1-.99=.01$ and the degrees of freedom $=9-1=8$
- $t_{1-\frac{.01}{2}, 8}=3.355$

cum. prob	$t_{\text {s0 }}$	$t_{.75}$	$t_{\text {. }}$	t_{35}	$t_{\text {t }}^{30}$	$t_{\text {as }}$	$t_{\text {g75 }}$	t_{99}	$t^{\text {g95 }}$	t_{999}	$t_{\text {g }}^{\text {g995 }}$
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	B0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0 non	0711	ก 896	1119	1415	1895	2365	2998	3499	4785	5408
A81 10	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	C 4.501	5.041
	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

Zoom In

cum. prob	$t_{\text {so }}$	$t_{.75}$	$t_{\text {. } 80}$	$t_{\text {B5 }}$	$t_{\text {. } 90}$	$t_{\text {, } 95}$	$t_{\text {t. } 975}$	$t_{\text {ts }}$	$t_{\text {t.995 }}$		
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	B0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	$\square \mathrm{n} 0$	0.711	0896	1119	1415	1895	2365	2998	3.499	4.785	5408
A $\begin{array}{r}81 \\ 9 \\ \\ \\ \\ 10\end{array}$	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	C 4.501	5.041
	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587

- A is the degrees of freedom, $n-1$
- B is the significance level - for confidence intervals we look for α in the two-tail row
- C is the t -value associated with the provided degrees of freedom and significance level

Finding t for Our Confidence Intervals

- Say we were trying to find the t-value for a 90\% confidence with $\mathrm{n}=11$
- This means $\alpha=1-.90=.10$ and the degrees of freedom = 11-1 = 10
- $t_{1-\frac{10}{2}, 10}=1.812$

Zoom In

$\begin{array}{r} \text { cum. prob } \\ \text { one-tail } \\ \text { two-tails } \\ \hline \end{array}$	$\begin{array}{r} t_{.50} \\ 0.50 \\ 1.00 \end{array}$	$\begin{array}{r} t_{.75} \\ 0.25 \\ 0.50 \\ \hline \end{array}$	$\begin{array}{r} t_{.80} \\ 0.20 \\ 0.40 \\ \hline \end{array}$	$\begin{array}{r} \boldsymbol{t}_{85} \\ 0.15 \\ 0.30 \end{array}$	$\begin{array}{r} t_{.90} \\ 0.10 \\ 0.20 \end{array}$	$\begin{array}{r} t_{.95} \\ 0.05 \\ 0.10 \\ \hline \end{array}$		$\begin{array}{r} t_{.99} \\ 0.01 \\ 0.02 \\ \hline \end{array}$	$\begin{array}{r} t_{\text {.995 }} \\ 0.005 \\ 0.01 \end{array}$	$\begin{array}{r} t_{\text {.g99 }} \\ 0.001 \\ 0.002 \end{array}$	$\begin{gathered} t_{\text {.9995 }} \\ 0.0005 \\ 0.001 \end{gathered}$
df											
1 2	0.000 0.000	1.000 0.816	1.376 1.061	1.963 1.386	3.078 1.886	6.314 2.920	12.71 4.303	31.82 6.965	63.66 9.925	318.31 22.327	636.62 31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
- 9	ก 0 On	0703	$\bigcirc 883$	$1.10 n$	1.383	1833	2762	2871	3.350	4297	4781
A 101	0.000	0.700	0.879	1.093	1.372	1.812	C 2.228	2.764	3.169	4.144	4.587

- A is the degrees of freedom, $n-1$
- B is the significance level - for confidence intervals we look for α in the two-tail row
- C is the t -value associated with the provided degrees of freedom and significance level

Confidence Interval Bounds When We Don't Know σ_{-}x

$$
\bar{x} \pm t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)
$$

Lower Bound $=\bar{x}-t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$
Upper Bound $=\bar{x}+t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$

Example 1

- Suppose a random sample of 81 students from the University of South Carolina was taken. Among the sampled students the sample mean number of times they inappropriately used the word like in a five minute conversation was 13 times with a sample standard deviation of 2.
- Our sample mean $=\bar{x}=13$
- Our sample standard deviation $=s_{x}=2$

Example 1

- Among the sampled students the sample mean number of times they inappropriately used the word like in a five minute conversation was 13 times with a sample standard deviation of 2 .
- Check Assumptions
- $\mathrm{n}>30$ so it is safe to assume the distribution of \bar{x} is bell-shaped
- The data is from a random sample

Example 1

- 95% Confidence Interval for population mean number of times a University of South Carolina student inappropriately says like in a five minute conversation:

$$
\begin{aligned}
& \bar{x} \pm t_{1-\frac{05}{2}, 80}\left(\frac{s_{x}}{\sqrt{n}}\right) \\
= & 13 \pm(1.990)\left(\frac{2}{\sqrt{81}}\right)
\end{aligned}
$$

$$
(11.5578,14.4422)
$$

Example 1

$$
(11.5578,14.4422)
$$

- We are 95% confident that the true population mean number of times a University of South Carolina student inappropriately says like in a five minute conversation is between 11.5578 and 14.4422 times

Example 2

- Suppose a random sample of 38 yearly average temperature measures in New Haven, CT. Among the sampled years the sample mean temperature was 51.0474 degrees Fahrenheit with a sample standard deviation of 1.3112.
- Our sample mean $=\bar{x}=51.0474$
- Our sample standard deviation $=s_{x}=1.3112$

Example 2

- Suppose a random sample of 38 yearly average temperature measures in New Haven, CT. Among the sampled years the sample mean temperature was 51.0474 degrees Fahrenheit with a sample standard deviation of 1.3112.
- Check Assumptions
- $n>30$ so it is safe to assume the distribution of \bar{x} is bell-shaped
- The data is from a random sample

Example 2

- 95\% Confidence Interval for population the true population mean yearly average temperature reading in New Haven is:

$$
\begin{gathered}
\bar{x} \pm t_{1-\frac{05}{2}, 38-1}\left(\frac{s_{x}}{\sqrt{n}}\right) \\
=51.0474 \pm(2.021)\left(\frac{1.3112}{\sqrt{38}}\right) \\
(50.61752,51.47728)
\end{gathered}
$$

Example 2

(50.61752, 51.47728)

- We are 95% confident that the true population mean yearly average temperature reading in New Haven is between 50.61752 and 51.47728 degrees Fahrenheit

Confidence Intervals for Means on your TI Calculator

- Confidence Intervals for means TI83/84
- https://www.youtube.com/watch?v=H3uU-Tx2YqO
- Raw Data
- https://www.youtube.com/watch?v=k2tV34JniHc
- https://www.youtube.com/watch?v=uUXfr8pZAOO

Confidence Intervals for Means on your TI Calculator

- When we know σ_{x}, with data
- INPUT:

1. Press STAT
2. Press \rightarrow to TESTS
3. Highlight '7: ZInterval'
4. Press ENTER
5. With Data
6. Enter the population standard deviation next to ' σ :'
7. You should have your data table entered in L1

- If you forgot: Press STAT, Press ENTER with 'Edit’ highlighted, Enter the data into the L1 col.

3. Next to 'List:' press $2^{\text {nd }}$ then press 1
4. Set 'Frequency' to 1
5. Enter the desired Confidence Level next to 'C-Level:'
6. Highlight Calculate
7. Press ENTER

Confidence Intervals for Means on your TI Calculator

- When we know σ_{x}, with data
- OUTPUT:
- (lower bound, upper bound) is our confidence interval
$-\bar{x}$ is the sample mean for the problem
$-s_{x}$ is the sample standard deviation for the problem
-n is the sample size and should match the number you entered

Confidence Intervals for Means on your TI Calculator

- When we know σ_{x}, with stats
- INPUT:

1. Press STAT
2. Press \rightarrow to TESTS
3. Highlight ' 7 : ZInterval'
4. Press ENTER
5. With Stats
6. Enter the population standard deviation next to ' σ :'
7. Put the sample mean next to ' \bar{x} :'
8. Put the sample size next to ' n :'
9. Enter the desired Confidence Level next to 'C-Level:'
10. Highlight Calculate
11. Press ENTER

Confidence Intervals for Means on your TI Calculator

- When we know σ_{x}, with stats
- OUTPUT:
- (lower bound, upper bound) is our confidence interval
$-\bar{x}$ is the sample mean for the problem and should match the number you entered
-n is the sample size and should match the number you entered

Confidence Intervals for Means on

your TI Calculator

- When we don't know σ_{x}, with data
- INPUT:

1. Press STAT
2. Press \rightarrow to TESTS
3. Scroll down using \downarrow to highlight '8: TInterval'
4. Press ENTER

- With Data

1. You should have your data table entered in L1

- If you forgot: Press STAT, Press ENTER with 'Edit' highlighted, Enter the data into the L1 col.

2. Next to 'List:' press $2^{\text {nd }}$ then press 1
3. Set 'Frequency' to 1
4. Enter the desired Confidence Level next to 'C-Level:'
5. Highlight Calculate
6. Press ENTER

Confidence Intervals for Means on

 your TI Calculator- When we don't know σ_{x}, with data
- OUTPUT:
- (lower bound, upper bound) is our confidence interval
$-\bar{x}$ is the sample mean for the problem
$-s_{x}$ is the sample standard deviation for the problem
-n is the sample size and should match the number you entered

Confidence Intervals for Means on

your TI Calculator

- When we don't know σ_{x}, with stats
- INPUT:

1. Press STAT
2. Press \rightarrow to TESTS
3. Scroll down using \downarrow to highlight ' 8 : TInterval'
4. Press ENTER
5. With Stats
6. Put the sample mean next to ' \bar{x} :'
7. Enter the sample standard deviation next to ' s_{x} :'
8. Put the sample size next to ' n :'
9. Enter the desired Confidence Level next to 'C-Level:'
10. Highlight Calculate
11. Press ENTER

Confidence Intervals for Means on

 your TI Calculator- When we don't know σ_{x}, with stats
- OUTPUT:
- (lower bound, upper bound) is our confidence interval
$-\bar{x}$ is the sample mean for the problem and should match the number you entered in stem 6b
$-s_{x}$ is the sample standard deviation for the problem
-n is the sample size and should match the number you entered in step 6c above

Confidence Intervals for Means

unknown: When we don't know σ_{x}

- StatCrunch Commands w/data
- Stat \rightarrow T Stats \rightarrow One Sample
\rightarrow with data (if you have the a list of data) \rightarrow Choose the column \rightarrow choose confidence interval \rightarrow enter the significance level \rightarrow Compute
- StatCrunch Commands w/ summaries
- Stat \rightarrow T Stats \rightarrow One Sample
\rightarrow with summary (if you have the count) \rightarrow enter the mean, standard deviation and sample size \rightarrow choose confidence interval \rightarrow enter the significance level \rightarrow Compute

Confidence Intervals for Means

 unknown: When we know σ_{x}- StatCrunch Commands w/ data
- Stat \rightarrow Z Stats \rightarrow One Sample
\rightarrow with data (if you have the a list of data) \rightarrow Choose the column \rightarrow choose confidence interval \rightarrow enter the significance level \rightarrow Compute
- StatCrunch Commands w/ summaries
- Stat \rightarrow Z Stats \rightarrow One Sample
\rightarrow with summary (if you have the count) \rightarrow enter the mean, standard deviation and sample size \rightarrow choose confidence interval \rightarrow enter the significance level \rightarrow Compute

Confidence Intervals known σ_{x}

Assumptions	Point Estimate	Margin of Error	Margin of Error
1. Random Sample	\bar{X}	$\sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{n}}$	$\bar{x} \pm Z \frac{\alpha}{2}\left(\frac{\sigma_{x}}{\sqrt{n}}\right)$
2. $n>30$ OR the population is bell shaped			

- We are --\% confident that the true population mean lays on the confidence interval.

Confidence Intervals unknown σ_{x}

Assumptions	Point Estimate	Margin of Error	Margin of Error
1. Random Sample	\bar{X}	$\sigma_{\bar{x}}=\frac{s_{x}}{\sqrt{n}}$	$\bar{x} \pm t_{1-\frac{\alpha}{2}, n-1}\left(\frac{s_{x}}{\sqrt{n}}\right)$
2. $n>30$ OR the population is bell shaped			

- We are --\% confident that the true population mean lays on the confidence interval.

